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1. Introduction

In recent years our understanding of corrections to the black hole entropy has increased

considerably. In a gravitational theory, using the Wald entropy formula [1], one can find

the contribution of higher order corrections to the tree level Bekenstein-Hawking area law

formula. For extremal black holes in string theory taking into account the higher derivative

terms, the corrected entropy has been evaluated in several papers including [2 – 4], where

it has been shown that the results are in agreement with the entropy coming from the

microstate counting in string theory.

An extremal black hole in four dimensions has AdS2×S2 near horizon geometry, while

in five dimensions the near horizon geometry could be either AdS2 × S3 or AdS3 × S2.

To compute the contribution of higher order corrections to a black hole with near horizon

geometry AdS2 × S3 one may simplify the Wald formula leading to the entropy function

formalism [5]. While for those with AdS3 × S2 near horizon geometry it is useful to work

within the framework of the c-extremization [6]. The resulting higher derivative corrections

to the Bekenstein-Hawking area law formula have to be compared with the microstate

counting in string theory/M-theory.

The aim of this article is to study higher order corrections to the entropy of five

dimensional N = 2 BPS black holes. We note, however, that our understanding of the

microscopic origin of the entropy for these black holes is quite limited. Actually we note

that although the microscopic origin of the entropy for N = 8, 4 five dimensional (rotating)

black holes has been understood for a decade [7, 8], for the case of N = 2 black holes it has

not been fully understood yet (see however [9]). A new attempt has recently been made to

understand the microscopic origin of the entropy for N = 2 black holes in five dimensions.

More precisely the microscopic counting of the five dimensional rotating black hole arising

from wrapped M2-branes in Calabi-Yau compactification of M-theory has been studied

in [10] where the authors established a connection between this black hole and another
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well understood black hole by making use of an embedding of space-time in the total space

of the U(1) gauge bundle over near horizon geometry of the black holes. The work of [10]

was limited to the case of near zero-entropy, zero-temperature and maximally rotating

black hole.

To study higher order corrections to N = 2 five dimensional BPS black holes we will

work with the full 5D supersymmetry invariant four-derivative action, corresponding to the

supersymmetric completion of the four-derivative Chern-Simons term which has recently

been obtained in [11].

The article is organized as follows. In section 2 we will fix our notation where we

present the five dimensional action obtained in [11]. In section 3 we will study higher order

corrections to the entropy of a five dimensional extremal BPS black hole using the fully

supersymmetrized higher derivative terms. We then compare the result with the corrections

coming from the bosonic Gauss-Bonnet action. We will also see how the higher derivative

terms remove the singularity of the small black hole. In section 4 we will first review the

five dimensional black string solution in the presence of R2 terms; then using the corrected

near horizon geometry of the black string solution we will extend the considerations of [10]

to the case including R2 terms. The last section is devoted to discussions and conclusions.

2. Basic setup

In this section we present the result of [11] to fix our notation. To study N = 2 supergravity

in five dimensions in the presence of R2 corrections, the authors of [11] utilize the super-

conformal formalism [12]. This approach, in particular, is useful when we want to write the

explicit form of the action. In this approach we start with a five dimensional theory which

is invariant under a larger group, i.e. superconformal group, and construct a conformal

supergravity. Then by imposing a gauge fixing condition the conformal supergravity is

reduced to the standard supergravity model.

The representation of superconformal group includes Weyl, vector and hyper multi-

plets. The bosonic part of the Weyl multiplet contains the vielbein ea
µ, two-form auxiliary

field vab, and a scalar auxiliary field D. The bosonic part of the vector multiplet contains

one-form gauge field AI and scalar fields XI , where I = 1, · · · , nv labels generators of a

gauge group. The hyper multiplet contains scalar fields Ai
α where i = 1, 2 is SU(2) doublet

index and α = 1, · · · , 2r refers to USp(2r) group. Although we won’t couple the theory

to matters, we shall consider the hyper multiplet to gauge fix the dilatational symmetry

which reduces the action to the standard N = 2 supergravity action.

In this notation at leading order the bosonic part of the action is [11]

I =
1

16πG5

∫

d5xL0, (2.1)

with

L0 = ∂aAi
α∂aAα

i + (2ν + A2)
D

4
+ (2ν − 3A2)

R

8
+ (6ν −A2)

v2

2
+ 2νIF

I
abv

ab

+
1

4
νIJ(F I

abF
J ab + 2∂aX

I∂aXJ) +
g−1

24
CIJKǫabcdeAI

aF
J
bcF

K
de , (2.2)
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where A2 = Ai
α abAα ab

i , v2 = vabv
ab and

ν =
1

6
CIJKXIXJXK , νI =

1

2
CIJKXJXK , νIJ = CIJKXK . (2.3)

To fix the gauge it is convenient to set A2 = −2. Then integrating out the auxiliary

fields by making use of their equations of motion one finds

L0 = R − 1

2
GIJF I

abF
Jab − Gij∂aφ

i∂aφj +
g−1

24
ǫabcdeCIJKF I

abF
J
cdA

K
e . (2.4)

The parameters in the action (2.4) are defined by

GIJ = −1

2
∂I∂J log ν|ν=1 , Gij = GIJ ∂iX

I∂jX
J |ν=1 , (2.5)

where ∂i refers to a partial derivative with respect to the scalar fields φi. In fact doing

this, we recover the very special geometry underlies the theory in the leading order.

We can also find higher derivative terms in the action using the superconformal lan-

guage. Actually, the supersymmetrized higher order action with four-derivative terms has

recently been obtained in [11]. The corresponding action is

L1 =
c2I

24

(

1

16
g−1ǫabcdeA

IaCbcfgCde
fg +

1

8
XICabcdCabcd +

1

12
XID2 +

1

6
F IabvabD

−1

3
XICabcdv

abvcd − 1

2
F IabCabcdv

cd +
8

3
XIvabD̂bD̂cv

ac (2.6)

+
4

3
XID̂avbcD̂avbc +

4

3
XID̂avbcD̂bvca −

2

3
e−1XIǫabcdev

abvcdD̂fvef

+
2

3
e−1F Iabǫabcdev

cdD̂fvef + e−1F Iabǫabcdev
c
f D̂dvef

−4

3
F Iabvacv

cdvdb −
1

3
F Iabvabv

2 + 4XIvabv
bcvcdv

da − XI(vabv
ab)2

)

,

where Cabcd is the Weyl tensor defined as

Cab
cd = Rab

cd +
1

6
Rδ

[a
[cδ

b]
d] −

4

3
δ
[a
[cR

b]
d] . (2.7)

The double covariant derivative of vab has curvature contributions given by

vabD̂bD̂cv
ac = vabDbDcv

ac +
2

3
vacvcbR

b
a +

1

12
vabv

abR . (2.8)

In general it is quite difficult to solve the equations of motion coming from the action

which contains both L0 and L1. Nevertheless since we are looking for supersymmetric

solutions, we will use the supersymmetry transformations to simplify the equations. The

supersymmetry variations of the fermions in Weyl, vector and hyper multiplets (taking
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only the bosonic terms) are1 (see e.g. [12])

δψi
µ = Dµεi +

1

2
vabγµabε

i − γµηi, (2.9)

δχi = Dεi − 2γcγabεiD̂avbc + γ · R̂(V )ijε
j − 2γaεiǫabcdev

bcvde + 4γ · vηi,

δΩIi = −1

4
γ · F Iεi − 1

2
γa∂aX

Iεi − XIηi,

δζα = γa∂aAα
i εi − γ · vεiAα

i + 3Aα
i ηi,

where garavitino ψi
µ and the auxiliary Majorana spinor χi come from the Weyl multiple,

while the gaugino ΩIi and ζα come from vector and hyper multiplets, respectively.

3. Black hole solution

In this section we consider a five dimensional extremal BPS black hole2 whose near horizon

geometry is AdS2 × S3. When we are dealing with an extremal black hole with AdS2

near horizon geometry, it is more appropriate to work with entropy function formalism [5].

In fact this approach has been used to study five dimensional extremal black holes in

Heterotic string theory in the presence of the higher derivative terms given by Gauss-

Bonnet action [13].3 It has been shown that this bosonic term is enough to correctly

reproduce the microscopic entropy coming from microstate counting in string theory. It

is the aim of this section to study the five dimensional extremal BPS black hole in the

presence of higher derivative terms which come from supersymmetrized action. We will

also compare the result with the case where only bosonic Gauss-Bonnet term is present.

In fact we are following [18] where the entropy of four dimensional extremal BPS black

holes have been calculated using supersymmetrized action with help of entropy function

formalism.

Let us start with the following ansatz for the near horizon geometry

ds2 = l2Ads2
ADS2

+ l2Sds2
S3, XI = cont. F I

rt = eI , vrt = V. (3.1)

Then the entropy function is given by E = 2π(eIqI − f0 + f1), where f0 is the leading order

contribution coming from quadratic part of the action, which is

f0 =
1

2
l2Al3S

[

ν − 1

2
D +

ν + 3

2

(

3

l2S
− 1

l2A

)

− 2(3ν + 1)

l4A
V 2 − 4νIe

I

l4A
V − νIJeIeJ

2l4A

]

, (3.2)

and the higher order contribution, f1, comes from the four-derivative terms which for our

ansatz is

f1 =
c2I

48
l2Al3S

[

XI

4

(

1

l2S
− 1

l2A

)2

+
4V 4

l8A
XI +

4V 3

3l8A
eI − DV

3l4A
eI +

D2

12
XI (3.3)

−2V 2XI

3l4A

(

3

l2S
+

5

l2A

)

− V eI

l4A

(

1

l2A
− 1

l2S

)]

.

1Here the covariant curvature R̂ij
µν(V ) is defined by R̂ij

µν(V ) = 2∂[µV
ij

ν]
− 2V i

[µkV
kj

ν]
+ fermionic terms,

where V ij
µ is a boson in the Weyl multiplet which is in 3 of the SU(2). We note, however, that for the

ansatz we are going to consider, this term vanishes.
2Explicit solutions of N = 2 5D supersymmetric black holes can be found for example in [14].
3Higher order corrections to 5D BH have also been studied in [15 – 17].
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At leading order where only f0 contributes, one may integrate out the the auxiliary

fields by extremizing the entropy function with respect to them. Doing so, we arrive at

f0 =
1

2
l2Al3S

[

6

l2S
− 2

l2A
+

1

2l4A
(νIνJ − νIJ)eIeJ

]

=
1

2
l2Al3S

(

6

l2S
− 2

l2A
+

GIJeIeJ

l4A

)

. (3.4)

It is then easy to extremize the entropy function with respect to the parameters to find

lA, lS ,XI and eI . In particular for STU model, where C123 = 1 and the other components

are zero, one gets

lS = 2lA = (q1q2q3)
1/6, XI =

(q1q2q3)
1/3

qI
, eI =

1

2

(q1q2q3)
1/2

qI
, (3.5)

and the corresponding black hole entropy is S = 2π
√

q1q2q3.

In general it is difficult to do the same while the higher order corrections are also

taken into account. Nevertheless as far as a BPS solution is concerned we can use the

supersymmetry transformations (2.9) to simplify the equations. In fact in this case we do

not even need to solve the equations. Actually for the ansatz we are considering, setting

the supersymmetry transformation to zero, one may write D,V,XI and ls in terms of lA.

The remaining parameter, lA, can then be found from equation of motion of the auxiliary

field D. Of course it is easy to see that the obtained solution is indeed a solution of the

equations of motion.

More explicitly, for a BPS solution setting the supersymmetry transformation to zero

for the ansatz (3.1) we find

D = − 3

l2A
, eI = −4

3
V XI , V = −3

4
lA, lS = 2lA. (3.6)

From these relations one may set XI = eI

lA
. On the other hand defining E = 1

6CIJKeIeJeK

we have

ν =
1

l3A
E, νIe

I =
3

l2A
E, νIJeIeJ =

6

lA
E. (3.7)

Using this notation, the equation of motion for the auxiliary field D reads

E − l3A +
l3A
12

c2I

(

DXI

6
− V eI

3l4A

)

= 0 (3.8)

so that lA = 1
2(8E− c2IeI

6 )1/3. By making use of the expressions for the parameters D,V,XI

and lS , the entropy function gets the following simple form

E = 2π(qIe
I − 4E +

1

8
c2Ie

I) = 2π

[(

qI +
1

8
c2I

)

eI − 2

3
CIJKeIeJeK

]

(3.9)

Extremizing the entropy function with respect to eI we get

2CIJKeJeK = qI +
1

8
c2I (3.10)
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which in principle can be solved to find eI in terms of the charges, c2I and parameters

CIJK ’s. The entropy is also given by S = 4π
3 q+

I eI .4 In particular for STU model we get

eI = (q+
1 q+

2 q+
3 )1/2/2q+

I . Plugging this into the expressions of lA and XI , we obtain

2lA = (q+
1 q+

2 q+
3 )1/6

(

1 − c2I

12

1

q+
I

)1/3

, XI =
(q+

1 q+
2 q+

3 )1/3

q+
I

(

1 − c2I

12

1

q+
I

)−1/3

. (3.11)

Finally the entropy is found to be

S = 2π
√

q+
1 q+

2 q+
3 . (3.12)

It is very interesting in the sense that the entropy of the black hole at R2 level has the

same form as the tree level one, except that the charges qI ’s are replaced by shifted charges

q+
I ’s.

This result can be used to see how the higher order corrections stretch the horizon. For

example if we start from a classical solution with q1 = 0 we get vanishing horizon (small

black hole) and vanishing entropy. But adding the R2 terms we get a smooth solution with

a non-zero entropy give by

S = π

√

c21

2
q+
2 q+

3 . (3.13)

This procedure could also be used to understand, upon dimensional reduction to four

dimensions, the single-charge small black hole studied in [19].

We note that in the above considerations we have used the supersymmetry transfor-

mations to simplify the computations and therefore the solution is supersymmetric. Thus

it does not exclude the existence of other solutions. In fact we would expect to have an-

other solution corresponding to a non-BPS solution. Actually one could start from a more

general constraint than (3.6) as follows

D =
α

l2A
, XI = β

eI

lA
, V = γlA, lS = 2lA (3.14)

and solve the equations for parameters (α, β, γ). Doing so, for fixed lA given above, we

find two solutions: (−3, 1,−3/4) and (3,−1,−3/4). The first one is the solution we have

studied, but the second one which is not supersymmetric leads to the following entropy

function

E = 2π

[(

qI −
3

8
c2I

)

eI − 2

3
CIJKeIeJeK

]

. (3.15)

It is straightforward to extremize the entropy function with respect to eI ’s to get the

parameters in terms of qI ’s, though we won’t do that here.

It is also instructive to compare the results with the case where the higher order

corrections are given in terms of the Gauss-Bonnet action. It is known that this term

cannot be supersymmetrized, still it is interesting to see what would be the corresponding

corrections. In our notation the Gauss-Bonnet term is given by

LGB =
c2IX

I

28 · 3π2

(

RabcdRabcd − 4RabRab + R2
)

. (3.16)

4We use a notation in which q+
I = qI + 1

8
c2I .
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It can be shown that with the specific coefficient we have chosen for the Gauss-Bonnet

action, the corresponding entropy function, fixing the auxiliary fields as (3.6) for the tree

level action, is the same as (3.9) and therefore we get the same results as those in supersym-

metrized action. This might be understood from the fact that the attractor mechanism [20]

works for both supersymmetric and non-supersymmetric cases [21]. In fact it is believed

that the important role is playing by the extremality (the AdS2 near horizon geometry)

rather than the supersymmetry [22].

4. Black string and rotating black hole

In this section we first review the results of [23] where the authors have studied the black

string solution in the presence of higher derivative terms given by (2.6). Then by making

use of the corrected near horizon geometry of the black string solution we will extend the

considerations of [10] to find the corrected near horizon geometry of the five dimensional

rotating black hole. On the other hand due to the attractor mechanism the near horizon

geometry is sufficient for finding the entropy of the corresponding black hole/string [5].

Therefore following [10] one would expect that this relation could be useful to understand

the microscopic origin of some black hole/string using the known cases in the presence of

R2 corrections.

Consider a five dimensional extremal BPS black string solution whose near horizon

geometry is AdS3 ×S2. Using the isometry of the near horizon geometry the most general

ansatz for the near horizon solution is

ds2 = l2Ads2
ADS3

+ l2Sds2
S2, XI = cont. F I

θφ =
pI

2
sin θ, vθφ = V sin θ, (4.1)

with constant D. By making use of the c-extremization [6] we can fix the parameters of the

ansatz as follows. In this method we first define c-function whose critical points correspond

to the solutions of the equations of motion. Then evaluating the c-function at critical points

gives the average of the left and right moving central charges of the associated dual CFT [6].

In five dimensions the c-function is given by

c = −6 l3Al2S L, (4.2)

where L is the Lagrangian evaluated on the above ansatz. The parameters of the ansatz

are obtained by extremizing this function with respect to them. In leading order when the

five dimensional action is given by (2.4) the above equations can be solved leading to

lA = 2lS =

(

1

6
CIJKpIpJpK

)1/3

, XI =
pI

(

1
6CIJKpIpJpK

)1/3
. (4.3)

Plugging these into (4.2), we find the central charge for the black string at two-derivative

level as c = CIJKpIpJpK .

In the presence of higher derivative terms given by (2.6), it is in general difficult

to solve the equations coming from extremization of the c-function. Nevertheless as far

– 7 –
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as a BPS solution is concerned we can use the supersymmetry transformations (2.9) to

simplify the equations. In fact for the ansatz we are considering, setting the supersymmetry

transformation to zero, we will be able to write the parameters D,V,XI and ls in terms

of lA. Then the remaining parameter, lA, can be found from equation of motion of the

auxiliary field D. More explicitly, from the supersymmetry transformations (2.9) for the

ansatz (4.1) we find [23]

D =
12

l2S
, pI = −8

3
V XI , V = −3

8
lA, lA = 2lS . (4.4)

On the other hand the equation of motion of the auxiliary field D is

1

6
CIJKXIXJXK +

c2I

72

(

DXI +
V pI

l4S

)

= 1, (4.5)

which by making use of (4.4) leads to l3A = 1
6CIJKpIpJpK + 1

12c2Ip
I . Finally the corrected

central charge of the associated dual CFT is given by

c = CIJKpIpJpK +
3

4
c2Ip

I . (4.6)

The equation of motion of the auxiliary field D may also be recast into the following

form
1

6
CIJKXIXJXK +

1

12l2A
c2IX

I = 1. (4.7)

We note that, setting c2I = 0, it reduces to ν = 1 where one can recover very special

geometry underlies the theory at leading order. Therefore we would like to interpret this

expression as a generalization of ν = 1 when the R2 corrections are also taken into account.

This is analogous to the one-loop correction to the prepotential of four dimensional N = 2

supergravity which it is given by F = 1
6

CIJKXIXJXK

X0 + Λ2 c2IXI

X0 .

It is then natural to define the dual coordinates XI as

XI =
1

6
CIJKXJXK +

1

12l2A
c2I , (4.8)

such that XIX
I = 1. From the supersymmetry conditions (4.4) one may set XI = pI

lA
to

find

XI =
pI

(1
6CIJKpIpIpK + 1

12c2IpI)1/3
, XI =

1
6CIJKpIpK + 1

12c2I

(1
6CIJKpIpIpK + 1

12c2IpI)2/3
. (4.9)

The magnetic central charge determining the tension of the string which is a function

of the moduli is defined by Zm = XIp
I . Using the above expression for XI we get

Zm =

(

1

6
CIJKpIpJpK +

1

12
c2Ip

I

)1/3

. (4.10)

Now we would like to extend the considerations of [10] to study corrections to the near

horizon geometry of the rotating extremal BPS black hole. To do this we start from the

– 8 –
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corrected near horizon geometry of the extremal black string solution which can be read

from (4.1) as follows

ds2 =
l2A
4

(

dx2 − 2rdxdr +
dr2

r2
+ dθ2 + sin2 θ dφ2

)

, XI =
pI

lA
,

F I
θφ =

pI

2
sin θ , v = −3

8
lA sin θ, (4.11)

where lA =
(

1
6CIJKpIpJpK + 1

12c2Ip
I
)1/3

. In writing the metric we have used the fact that

AdS3 can be written as S1 fibered over AdS2.

To proceed it is useful to introduce a new notation in which the auxiliary two-form field

vµν can be treated as an additional gauge field in the theory with charge p0. More explicitly

we define F 0
θφ = p0

2 sin θ such that vθφ = −3
4 lAF 0

θφ. Accordingly, we could introduce a new

scalar field X0 such that in the near horizon geometry one may set X0 = p0

lA
. Using this

notation the constraint (4.7) can be written as

1

6
CIJKXIXJXK +

1

12
c2I(X

0)2XI |p0=1 = 1. (4.12)

Obviously working with this notation all expressions reduce to those we had for p0 = 1,

though it is not a solution for p0 6= 1. Nevertheless we will work with p0 6= 1 with the

understanding that the solution is obtained by setting p0 = 1. It is worth noting that in

general the auxiliary field vµν cannot be treated as a gauge field, though it can be seen

that for the models we are going to study it may be considered as a gauge field.

It is also useful to introduce indices A,B, · · · such that they take their values over 0

and I, J, · · · by which the equation (4.12) can be recast into the following form

1

6
CABCXAXBXC = 1 (4.13)

where CABC = CIJK for A,B,C = I, J,K and C00I = c2I

6 and the other components are

zero. Thus, following the notion of very special geometry, it is natural to define XA and

the metric CAB as follows

XA =
1

6
CABCXBXC , CAB =

1

6
CABCXC . (4.14)

It is easy to verify that

XAXA = 1, XA = CABXB , CABXAXB = 1. (4.15)

In this language the magnetic central charge can also be defined as Zm = XApA and

therefore the near horizon parameters can be fixed by extremizing it, i.e. ∂iZm = ∂iXApA =

0. Using (4.15) a solution would be XA = pA/Zm. Plugging this into (4.13) we find

Zm =

(

1

6
CABCpApBpC

)1/3

=

(

1

6
CIJKpIpJpK +

(p0)2

12
c2Ip

I

)1/3

. (4.16)

Of course to get the final result one needs to set p0 = 1 at the end of the computations.
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By making use of this notation, with the understanding of p0 = 1, the solution (4.11)

can be written as follows

ds2 =
Z2

m

4

(

dx2 − 2rdxdt +
dr2

r2
+ dθ2 + sin2 θ dφ2

)

, XA =
pA

Zm
, (4.17)

AA
θ = −pA

2
cos θ dφ, Z3

m =
1

6
CABCpApBpC .

Following [10] we will consider the total space of U(1) bundle over (4.17) to define a

six dimensional manifold with the metric

ds2
6 =

Z2
m

4

(

dx2−2rdxdt+
dr2

r2
+σ2

1 +σ2
2

)

+(2XAXB−CAB)(dyA+AA)(dyB +AB). (4.18)

Here σi are right invariant one-forms such that σ2
1 + σ2

2 = dθ + sin2 θ dφ2. Let us define

new coordinates z, ψ through the following expressions

yA = zA + (sin B − 1)XAXBzB − 1

2
pAψ, x =

2cos B

Zm
XAzA (4.19)

where sin B is a constant which its physical meaning will become clear later. We define

the coordinates such that the new coordinates have the following identification

ψ ∼ ψ + 4πm, zA ∼ zA + 2πnA, (4.20)

where m and nA are integers. Accordingly one can read the identifications of y and x.

Using the new coordinate ψ the right invariant one-forms can be defined by

σ1 = − sinψdθ + cos ψ sin θdφ,

σ2 = cos ψdθ + sin ψ sin θdφ,

σ3 = dψ + cos θdφ. (4.21)

In terms of the new coordinates the six dimensional metric (4.18) reads

ds2 =
Z2

4

[

− (cos B rdt + sin Bσ3)
2 +

dr2

r2
+ σ2

1 + σ2
2 + σ2

3

]

+(2XAXB − CAB)(dzA + ÃA)(dzB + ÃB), (4.22)

where ÃA = −pA

2 (cos B rdt + sinBσ3). The obtained six dimensional manifold can be

treated as the total space of a U(1) bundle over BMPV black hole at R2 level. Therefore

we can reduce the metric (4.22) to five dimensions to get BMPV black hole where higher

derivative corrections are also taken into account. The resulting five dimensional black hole

solution is

ds2 =
l2A
4

[

− (cos B rdt + sinBσ3)
2 +

dr2

r2
+ σ2

1 + σ2
2 + σ2

3

]

, XI =
pI

lA
, (4.23)

ÃI = −pI

2
(cos B rdt + sin Bσ3), Ã0 = −1

2
(cos B rdt + sin Bσ3),

– 10 –



J
H
E
P
0
8
(
2
0
0
7
)
0
9
4

and the auxiliary field is given by v = −3
4 lAF̃ 0. From this solution we can identify sin B

as the angular momentum, J , of the BMPV solution through the relation sinB = J
Z3 . As

a result we have demonstrated that the total bundle space of near horizon wrapped M2’s

and wrapped M5’s are equivalent up to R2 level, generalizing the tree level results of [10].

In fact one may go further to show that both of them can be obtained from quotients of

AdS3 × S3 with a flat U(1)N−1 bundle, similar to tree level case considered in [10]. It is

then possible to use this connection to increase our understanding of microstate counting

of 5D supersymmetric rotating black hole arising from wrapped M2-branes in Calabi-Yau

compactification of M-theory. We hope to come back to this point in our future publication.

5. Discussions and conclusions

In this paper we have studied higher order corrections to the entropy of extremal BPS black

holes in five dimensions in which the higher order corrections come from supersymmetric

completion of the Chern-Simons term. The explicit corrections have been written for a

specific model, namely, STU model. To extend these results to a generic case we will have

to solve a set of equations which can schematically be written as follows

CIJKxJxK = aI , I = 1, · · · , N, (5.1)

where CIJK and aI and given parameters. In general it is difficult to solve these equations

and they may not even have a unique solution. Nevertheless, for a particular model they

can be solved explicitly (for example see [24]). We have observed that the solution of the

above equations can be used for both tree level case and the case when the R2 corrections

are included. The only difference is that in the presence of R2 terms one just needs to

replace aI by another constant which is related by a constant shift.

In fact as far as the entropy is concerned we have seen that the corrected entropy

can simply be obtained by replacing the electric charges qI ’s with the shifted charges q+
I ’s

defined in footnote 4. In particular this result shows how the higher order terms stretch

the horizon leading to non-zero entropy out of a small black hole which in the tree level is

singular with vanishing entropy.

We note that when the near horizon geometry is AdS3×S2 it has been shown in [6, 27]

that the four derivative action gives the exact expression for the entropy in the large

momentum limit. Following our study in the present paper, it is interesting to see if this

is also the case when the near horizon geometry is AdS2 × S3.

As an aside let us define CIJK in terms of CIJK by CIJKCKLM = δI
LδJ

M + δI
MδJ

L;

although it is not clear whether this equation can be solved or even if it has a unique

solution, it can be used to write a solution for equations (5.1). For example in terms of the

electric charges the corresponding black hole entropy could be written as [25]

S = 2π

√

1

6
CIJKqIqJqK . (5.2)

In the presence of R2 corrections the entropy has the same form, except that one needs to

replace qI by q+
I .
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Unfortunately the microscopic origin of the entropy of the five dimensional black hole

we have been considering has not been fully understood (see however [9]). Therefore a

priori it is not clear with what result it should be compared. Nevertheless we may compare

the results to those obtained from another method. In particular one can use the 4D/5D

connection to study the five dimensional black hole using the known four dimensional

results [17]. We note, however, that to make this comparison more precise we need to un-

derstand the 4D/5D connection better specially when the supersymmetrized R2 corrections

are added [26].

We have also studied the black string solution in the presence of higher derivative terms.

Using the corrected solution we have generalized the consideration of [10]. In particular

we have shown that the total bundle space of near horizon wrapped M2’s and wrapped

M5’s are equivalent up to R2 level, generalizing the tree level results of [10]. Actually we

could also show that both of them can be obtained from quotients of AdS3 × S3 with a

flat U(1)N−1 bundle, similar to tree level case considered in [10]. Although we have not

pushed this observation any further, one might suspect that this connection could lead to

better understanding of the microstate counting of 5D supersymmetric black holes arising

from wrapped M2-branes in Calabi-Yau compactification of M-theory.

Note added: while we were in the final stage of the project the paper [28] appeared in

the arXive where the five dimensional black hole in the presence of higher derivative terms

given by (2.6) has been studied.
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